6.5 Harder Trigonometric Equations

更复杂的三角方程 - 练习题

基础练习题

Question 1 简单

求解下列方程,在给定区间内:

  1. \(\sin 4\theta = 0\),\(0 \leq \theta \leq 360°\)
  2. \(\cos 3\theta = -1\),\(0 \leq \theta \leq 360°\)
  3. \(\tan 2\theta = 1\),\(0 \leq \theta \leq 360°\)

💡 提示

使用变量替换法,设 \(X = n\theta\),然后调整解区间。

答案

1. \(\theta = 0°, 45°, 90°, 135°, 180°, 225°, 270°, 315°, 360°\)

2. \(\theta = 60°, 180°, 300°\)

3. \(\theta = 22.5°, 112.5°, 202.5°, 292.5°\)

Question 2 简单

求解下列方程,在给定区间内:

  1. \(\cos 2\theta = \frac{1}{2}\),\(0 \leq \theta \leq 2\pi\)
  2. \(\tan \frac{\theta}{2} = -\frac{1}{\sqrt{3}}\),\(0 \leq \theta \leq 2\pi\)
  3. \(\sin(-\theta) = \frac{1}{\sqrt{2}}\),\(0 \leq \theta \leq 2\pi\)

答案

1. \(\theta = \frac{\pi}{6}, \frac{5\pi}{6}, \frac{7\pi}{6}, \frac{11\pi}{6}\)

2. \(\theta = \frac{5\pi}{3}\)

3. \(\theta = \frac{3\pi}{4}, \frac{7\pi}{4}\)

中等难度练习题

Question 3 中等

求解下列方程,在给定区间内:

  1. \(\tan(45° - \theta) = -1\),\(0 \leq \theta \leq 360°\)
  2. \(2\sin(\theta - \frac{\pi}{9}) = 1\),\(0 \leq \theta \leq 2\pi\)
  3. \(\tan(\theta + 75°) = \sqrt{3}\),\(0 \leq \theta \leq 360°\)

解题步骤示例(第1题):

  1. 设 \(X = 45° - \theta\)
  2. 调整区间:\(-315° \leq X \leq 45°\)
  3. 求解 \(\tan X = -1\)
  4. 找到解:\(X = -45°, 135°, 315°\)
  5. 转换回 \(\theta\):\(\theta = 90°, -90°, -270°\)
  6. 在给定区间内:\(\theta = 90°, 270°\)

答案

1. \(\theta = 90°, 270°\)

2. \(\theta = \frac{7\pi}{18}, \frac{19\pi}{18}\)

3. \(\theta = 15°, 195°\)

Question 4 中等

求解下列方程,在给定区间内:

  1. \(3\sin 3\theta = 2\cos 3\theta\),\(0 \leq \theta \leq 180°\)
  2. \(4\sin(\theta + \frac{\pi}{4}) = 5\cos(\theta + \frac{\pi}{4})\),\(0 \leq \theta \leq \frac{5\pi}{2}\)
  3. \(2\sin 2x - 7\cos 2x = 0\),\(0 \leq x \leq 180°\)

💡 提示

对于形如 \(a\sin n\theta = b\cos n\theta\) 的方程,可以两边同时除以 \(\cos n\theta\) 得到 \(\tan n\theta = \frac{b}{a}\)。

答案

1. \(\theta = 20.6°, 80.6°, 140.6°\)

2. \(\theta = 0.197, 1.77, 3.34, 4.91\)

3. \(x = 37.0°, 127.0°\)

高难度练习题

Question 5 困难

求解下列方程,在给定区间内:

  1. \(\sin(x + 20°) = \frac{1}{2}\),\(0 \leq x \leq 180°\)
  2. \(\cos 2x = -0.8\),\(0 \leq x \leq 180°\)(答案保留1位小数)

解题步骤示例(第1题):

  1. 设 \(X = x + 20°\)
  2. 调整区间:\(20° \leq X \leq 200°\)
  3. 求解 \(\sin X = \frac{1}{2}\)
  4. 找到解:\(X = 30°, 150°\)
  5. 转换回 \(x\):\(x = 10°, 130°\)

答案

1. \(x = 10°, 130°\)

2. \(x = 66.4°, 113.6°\)

Question 6 困难

给定方程 \(4\sin 2\theta = 3\cos 2\theta\):

  1. 证明 \(\tan 2\theta = 0.75\)
  2. 在区间 \(0 \leq \theta \leq 2\pi\) 内求解,答案保留3位有效数字

解题步骤:

  1. 两边同时除以 \(\cos 2\theta\):\(\frac{4\sin 2\theta}{\cos 2\theta} = 3\)
  2. 得到:\(4\tan 2\theta = 3\),所以 \(\tan 2\theta = 0.75\)
  3. 设 \(X = 2\theta\),调整区间:\(0 \leq X \leq 4\pi\)
  4. 求解 \(\tan X = 0.75\)
  5. 找到解:\(X = 0.644, 3.785, 6.927, 10.068\)
  6. 转换回 \(\theta\):\(\theta = 0.322, 1.893, 3.464, 5.034\)

答案

1. 证明过程见解题步骤

2. \(\theta = 0.322, 1.89, 3.46, 5.03\)

综合应用题

Question 7 困难

方程 \(\tan kx = -\frac{1}{\sqrt{3}}\),其中 \(k\) 是常数且 \(k > 0\),在 \(x = \frac{\pi}{3}\) 处有解。

  1. 求 \(k\) 的一个可能值
  2. 说明这是否是唯一可能的值

解题步骤:

  1. 将 \(x = \frac{\pi}{3}\) 代入方程:\(\tan(k \cdot \frac{\pi}{3}) = -\frac{1}{\sqrt{3}}\)
  2. \(\tan(\frac{k\pi}{3}) = -\frac{1}{\sqrt{3}} = \tan(-\frac{\pi}{6})\)
  3. 所以 \(\frac{k\pi}{3} = -\frac{\pi}{6} + n\pi\)(\(n\) 为整数)
  4. 解得 \(k = -\frac{1}{2} + 3n\)
  5. 由于 \(k > 0\),取 \(n = 1\),得 \(k = \frac{5}{2}\)

答案

1. \(k = \frac{5}{2}\)

2. 不是唯一值,\(k = \frac{5}{2} + 3n\)(\(n\) 为正整数)都是可能的值